3. SAXS Data Acquisition and Reduction

> - a "how to" guide

Exploring the very small

Data Acquisition and Reduction

- Objective

Obtain 1D scattering curves from 2D patterns of best quality possible, ready to analyze. Theses curves may have:

- Good sample signal
- Low background noise
- Appropriate q-range and enough angular span
- Good alignment of holder and selection of geometry
- If incorrect, both can create extra background to data
- Selecting camera configuration to have best instrumental function
- Appropriate Distance
- Adequate slits configuration
- Correct sample thickness
- Properly do the calibrations and subtractions
- Exposure time and transmisison
- Sample-to-detector distance
- Absolute Intensity
- Perform careful SAXS experiment and correct data treatment

Experiment Overview

Preparing the Experiment

- Select the instrument and choose energy (wavelength) and tube power
- Choose detector(s)
- Select and set sample-todetector distance (SD)
- Choose sample holder and sample environment
- Select the slit configuration (mirror, HiRes, HiFlux,...)
- Do a sample holder alignment

Data acquisition

- Measure Calibrants:
- Direct Beam
- Silver Behenate
- Glassy Carbon
- Empty
- Measure sample(s)
- Extra Measurements :
- Windows or emtpy containers (empty cuvette)
- Buffer or solution

Data reduction

- Make angular averages of data
- Calculate sample-to-detetctor distance and center of the beam
- Subtract the background of camera or sample buffer or empty cuvette
- Normalization to: Exposure time, Transmission and Absolute Intensity (if necessary)

Data analysis

- Modellisation and fit of 1-dimensional data (curves)

Data acquisition and treatment

1) Measure calibrants and direct beam to do

Angular Integrations (transforms 2D into 1D)
Need the distance SD
Need center of beam
Need to calculate q-vector
2) Measure sample and empties
3) Measure transmissions of sample and empties
4) Normalize to exposure time and transmission
5) Subtract the empties
6) Save the data for analyze

Preparing and Making a Measurement

Prior to measurement

- Fixed Instrument (Xeuss)

Multilayer, collimating mirrors
Energy and tube power

- Select Detector type

SAXS, WAXS or both

- Selection of sample holder

Large choice for Xeuss

- Selection of distance sample-to-detector.

Modular camera length

- Selection of slit collimation and flux. Double set of slits with motorized independent blades
- Select Exposure time

Noise and statistics

Experiment set-up

- Cu micro source 8 keV .
- Pencil beam $800 \times 800 \mu \mathrm{~m}$ or $500 \times 500 . \mu \mathrm{m}$
- Two-dimensional Hybrid pixel detector situated at 0.1 to 6 m from the sample.
- Flux $\sim 40 \mathrm{Mph} / \mathrm{s}$
- Scan steps in \boldsymbol{Z} and \boldsymbol{X} and rotation

ID02 ESRF

- Undulator synchrotron source at approximately 50 m from the sample. Beam monochromatized to a wavelength of 0.1 nm -or an energy of 12 keV .
- Pencil beam $200 \times 200 \mu \mathrm{~m}$.
- Two-dimensional CCD detector situated at 3-10 m from the sample.
- Flux very high
- Scan steps in \boldsymbol{Z} and \boldsymbol{Y} 1-0.25 mm.

Selecting the sample-to-detector Distance

$\mathrm{Q}_{\text {min }}$, is defined by the beamstop and the divergency

$$
\mathrm{Q}_{\min }=\frac{4 \pi \sin \theta_{\min }}{\lambda}
$$

$$
d_{\min }=2 \pi / Q_{\max }
$$

$\mathrm{Q}_{\text {max }}$ absolute, is defined by the exit window. $\mathrm{Q}_{\text {max }}$ defined by the farest edge of the detector.

$$
\begin{aligned}
\mathrm{Q}_{\max } & =\frac{4 \pi \sin \theta_{\max }}{\lambda} \\
d_{\max } & =2 \pi / Q_{\min }
\end{aligned}
$$

Q-range (aprox.) as function of SD distance

Beam on geometrical center of detector and beamstop

SD $[\mathrm{mm}]$	Pipe Sections	$\mathbf{q}_{\text {min }}\left[\mathrm{nm}^{-1]}\right.$	$\mathrm{q}_{\text {max }}\left[\mathrm{nm}^{-1}\right]$	Characteristic Dimension $[\mathrm{nm}]$
2485	\square		0.042	2.21
1190	\square	0.085	4.58	from 2.8 to 150
538	\square	0.18	9.8	from 1.4 to 73
360		0.27	14.2	from 0.44 to 34

Cu radiation

$\mathrm{q}\left[\mathrm{nm}^{-1}\right]$

Select Appropriate Sample holder

Multicapillary

GiSAXS

Alignment tool

Flow-through

Linkam temperature

X-ray energy and sample thickness

- Optimal thickness

Are we going through? Is the energy enough?

Absorption $\exp (-\mu t)$
How much the radiation is absorbed? Scattering is linear with thickness

- Fluorescence. Is Cu radiation ok if sample contains iron?

Fluorescence (resonant) gives high background level andspoils scattering signal (non-resonant).

Optimal thickness: $1 / \mu$

m : function of radiation energy and atomic number
Cu Radiation and Carbon: $1 / \mu=1 \mathbf{m m}$

Choice of Slits - Instrumental Function

Slits and Flux

Two set of slits S1 and S2. Every slit set consists of 4 independent blades. Apertures are usually squared, but asymmetrical geometries are also possible.

- Close the slits for High Resolution (HR) and better resolution. Flux drops. Instrumental function thinner.
- Open the slits for High Flux (HF). But divergency increases. Instrumental function widens.

Compromise between flux and resolution!

Slits and Flux

Name		S1 (mm)	$\mathrm{S} 2(\mathrm{~mm})$	Relative Flux 1
UHR	Ultra-high Resolution	0.3×0.3	0.25×0.25	0.097
HR	High Resolution	0.6×0.6	0.5×0.5	0.39
HF	High Flux	1.2×1.2	0.8×0.8	1.00
VHF	Very high Flux	1.5×1.5	1.0×1.0	--
FO	Full Open	8.0×8.0	8.0×8.0	No collimation

${ }^{1}$ Relative to High Flux

Relative size

Preparing a Measurement

Calibration

- Empty camera
- Ag Behenate
- For distance calibration and q-vector construction
- Glassy carbon

- For absolute intensity normalization and creation of mask (shadows)
- Direct Beam
- For center determination of the center of the beam

Data Acquisition software

Newplot

SPEC front-end graphical interface / SPECfe

SPECfe

Counting

```
1647.SAXS> ct 1
Fri May 31 09:22:52 2013
    Seconds = 1
    Monitor = 54008 (54008/s)
Detector = 0 (0/s)
    Dectris =0 (0/s)
    Linkam = 0 (0/s)
```


Exploring the very small

SPECfe

Slit collimation and Flux

SPECfe

Sample holder alignment

1) Insert the PINdiode (if needed)
2) Open the shutter
3) Scan the appropriate motor

Sample holder alignment

Transmission curves of sample holder across the beam.

Motor Scan

Intensity of beam measured with PIN diode, as function of motor position.

Sample holder alignment

5-hole holder

- Image of the 5-hole powder sample holder.
- Arrow marks position of a sample in the holder.

-Transmission plot of the intensity of the beam across the 5 -hole powder sample holder. Five peaks represent the five holes.
- At the arrow position, the hole with sample appears to absorb more x-ray that empty holder, as expected.

SAXS beamstop alignment

SAXS

Pixel size: $172 \mu \mathrm{~m}$
Motor shift $=\Delta$ pixel $\times 0.172 \mathrm{~mm}$
Motors:
bsx (beamstop horizontal)
bsz (beamstop vertical)

Data files Binary file : *.edf (ESRF Data Files)

ASCII header in the file between curly brackets $\}$

```
{
EDF_DataBlockID = 1.Image.Psd ;
EDF_BinarySize = 1206272 ;
EDF_HeaderSize = 8192 ;
ByteOrder = LowByteFirst ;
DataType = SignedInteger ;
Dim_1 = 487 ;
Dim_2 = 619 ;
title = virtual_detector_001_0_00009.edf ;
Intensity1 = 1 ;
ExposureTime = 60 ;
Dummy = -10;
DDummy = 0.1 ;
Offset_1 = 0 ;
Offset_2 = 0 ;
Center_1 = 380.56 ;
Center_2 = 183.98 ;
PSize_1 = 0.000172 ;
PSize_2 = 0.000172 ;
SampleDistance = 1.04322 ;
WaveLength = 1.5411e-10 ;
RasterOrientation = 1 ;
Detector = 1656726 ;
History-1 = saxs_mac -p +pass -omod n -i1dis 1.04322 -i1wvl
1.5411e-10 -i1cen 244.65 513.13 -type SignedInteger
/data0/images/external/virtual_detector_001/virtual_detector_001
_0_00009.edf
/data0/images/external/virtual_detector_001/virtual_detector_001
_0_00009.edftmp ;
HeāderID = EH:000001:000000:000000 ;
```

}

```
```

```
bsx = 2.59301 ;
```

```
bsx = 2.59301 ;
bsz = 0.97 ;
bsz = 0.97 ;
cam = 100.975 ;
cam = 100.975 ;
Compression = None ;
Compression = None ;
count_time = 60.000000000 ;
count_time = 60.000000000 ;
Date = Wed Feb 5 18:16:26
Date = Wed Feb 5 18:16:26
2014 ;
2014 ;
detx = - 25 ;
detx = - 25 ;
detz = -25 ;
detz = -25 ;
Image = 1 ;
Image = 1 ;
run = 0 ;
run = 0 ;
s1bot = 0.6 ;
s1bot = 0.6 ;
s1hl = 0.6 ;
s1hl = 0.6 ;
s1hr = 0.6 ;
s1hr = 0.6 ;
s1top = 0.600003 ;
s1top = 0.600003 ;
s2bot = 0.4 ;
s2bot = 0.4 ;
s2hl = 0.4 ;
s2hl = 0.4 ;
s2hr = 0.4 ;
s2hr = 0.4 ;
s2top = 0.4 ;
s2top = 0.4 ;
SaxsDataVersion = 2.40 ;
SaxsDataVersion = 2.40 ;
Size = 1206272 ;
Size = 1206272 ;
th = 0 ;
th = 0 ;
VersionNumber = 0.10;
VersionNumber = 0.10;
x = -19.2 ;
x = -19.2 ;
z = -1.4 ;
z = -1.4 ;
Temperature = 20.3
Temperature = 20.3
```

s1h1 = 0.6,

```
```

s1h1 = 0.6,

```

\section*{Making the actual measurement}

Sample(s)
- Measurement of :
- Empty cuvette (buffer or solution)
- Sample in its cuvette or in its buffer or solution
- Transmissions


\section*{Data Reduction}

\section*{Data Reduction}
1) Measure calibrants and direct beam to do Angular Integrations (transforms 2D into 1D)

Need the distance SD
Need center of beam
Need to calculate q-vector
2) Measure sample and empties
3) Measure transmissions of sample and empties
4) Normalize to exposure time and transmission
5) Subtract the empties
6) Save the data for analyze

\section*{Angular Integration}

2D images into 1D curves



X-ray
beam

\section*{Quick guide to FOXTROT Data Reduction}

\section*{Foxtrot environment}


\section*{Quick guide to FOXTROT Data Reduction}


Selection of file / two clicks


\section*{Quick guide to FOXTROT Data Reduction}

\section*{Changing scale of image}


Opening other file (different size)


\section*{Quick guide to FOXTROT Data Reduction}

Edit context data (partially read from header) used for Angular Integration


\section*{Quick guide to FOXTROT Data Reduction}


\section*{Quick guide to FOXTROT Data Reduction}

\section*{Building a mask / Threshold mask}


\section*{Quick guide to FOXTROT Data Reduction}

\section*{Angular Integration/ Circle Gathering}


\section*{Quick guide to FOXTROT Data Reduction}

\section*{Angular Integration／Circle Gathering}

1－dimensional result of angular integration

3．Foxtrot 3.0 .35 （2014－06－26 18．52：20）

\(\infty\) 亩 \(\omega\) 国

\section*{Filles}

W：20140626 图 品品品
－w： 120140626
－20140626＿0＿00024．edf 20140626＿1＿00024．edf
-20140626 － 00023 edf 20140626－ 20140626 －00022edf 20140626＿0＿00022．edf 20140626＿1＿00022．edf 20140626＿0＿00021．edf 20140626＿1－00021．edf 20140626＿0＿00020．edf 20140626＿1＿00020．edf 20140626＿0＿00019．edf 20140626＿1＿00019．edf 20140626＿0＿00018．edf 20140626＿1＿00018．edf 20140626＿0＿00017．edf 20140626＿1＿00017．edf 20140626＿0＿00016．edf 20140626＿1＿00016．edf 20140626＿0＿00015．edf 20140626＿1＿00015．edf 20140626＿1＿00015．edf － 1 20140626 1－00014 edf － 1 III

\section*{Logs}

嗳 Operation Toolba


Average／Substract and Fit

2－dimensional image＋mask

\section*{Quick guide to FOXTROT Data Reduction}


\section*{Quick guide to FOXTROT Data Reduction}

\section*{Saving Data / Nexus file (ASCII)}


\section*{Quick guide to FOXTROT Data Reduction}

Doing a similar process for other file (WAXS), the two curves can be plotted in the same graph. Files with name '_0_' are SAXS, files with '_1_' are WAXS.


\section*{Calibration of Q-vector and distance calculation}

\section*{Silver Behenate (AgBeh)}



Lamellar structure with :
\(\mathrm{d}_{\mathrm{oo1} 1}=58.7 \AA\)
\(\mathrm{Q}_{\mathrm{oo1}}=1.07 \mathrm{~nm}^{-1}\)


\section*{Distance Calculation}

SPEC function (by Xenocs):
d = real distance
\(d_{-}=\)distance used to first integration
\(q_{-}=q\)-value measured in the first integration from the calibration peak
\(\mathrm{q} 0=\mathrm{q}\)-value tabulated for the calibration peak
( \(\mathrm{AgBeh}: \mathrm{q}_{\circ}=1.070 \mathrm{~nm}^{-1}\) )
\[
d=\frac{d_{-} \tan \left[2 \sin ^{-1}\left(\lambda q_{-} / 4 \pi\right)\right]}{\tan \left[2 \sin ^{-1}\left(\lambda q_{0} / 4 \pi\right)\right]}
\]

Exploring the very small

\section*{Experiment Info into the image header}


\section*{Data Normalization}

\section*{Normalization to Exposure Time}



\section*{Normalization to transmission}

Use the values from a sample scan to get the transmission \(T\), ans then divide the scattering curves by the measured \(T\)
\[
\begin{aligned}
& T=\frac{I-I_{b}}{I_{0}-I_{b}} \\
& I_{o}=24900 \\
& I=15000 \\
& I_{b}=400 \\
& T=(15000-400) /(24900-400) \\
& T=0.595918 \quad(\sim 60 \%)
\end{aligned}
\]


\section*{Absolute Intensity Calibration (with \(\mathrm{H}_{2} \mathrm{O}\) )}

Measure scattering from empty capillary and capillary full of water


Data

Measure transmission \(\left(1 / I_{0}\right)\) of empty capillary and capillary full of water
```

SAXS>dscan z -1.5 1.5 60 0.1

```

\[
\begin{array}{ll}
\text { Capillary : } & \mathrm{T}_{\mathrm{c}}=710 / 1110=0.6396 \\
\text { Water : } & \mathrm{T}_{\mathrm{w}+\mathrm{c}}=290 / 1110=0.2613
\end{array}
\]

Exploring the very small

\section*{Absolute Intensity Calibration (with \(\mathrm{H}_{2} \mathrm{O}\) )}

Measure of the diameter \(f\) of the capillary


\section*{Absolute Intensity Calibration (with \(\mathrm{H}_{2} \mathrm{O}\) )}

Subtract the scattering curve of empty capillary from that of the water in capillary, to obtain the contribution of water alone


Tabulated value for water intensity
\[
I_{w}(0)=1.6610^{-3} \mathrm{~mm}^{-1}
\]

Linear fit (or extrapolation) to \(\mathrm{Q}=0 \mathrm{~nm}^{-1}\) and measure \(\mathrm{I}_{\mathrm{w}}(0)\)
\(I_{w}(0)=1.0010^{-3}\) a.u. \(/ 1.12 \mathrm{~mm}=\) \(1.7910^{-3}\) a.u./mm

Correction factor \(\kappa=1.66 / 1.79\)
\[
\kappa=0.927
\]

Finally, the intensity from the a given sample has to be divided by its thickness. Units will be in \(\mathbf{m m}^{-1}\)

Exploring the very small

\section*{Absolute Intensity Calibration (with Glassy Carbon)}

Load into SASfit (or other) the Glassy Carbon data from the calibration sample provided.


\section*{Absolute Intensity Calibration (with Glassy Carbon)}

\section*{Load the calibration data of the Glassy Carbon data (APS): Glassy Carbon N final data.dat}

\section*{Note!}
-Unit conversion : Å -> nm
- lines to skip : 1
- file extension : dat



SAXS Data Acquisition and Reduction

\section*{Absolute Intensity Calibration (with Glassy Carbon)}

Calculate the factor to the applied to your data in order to overlap with the calibration curve. In this case :21.8. Calibration sample thickness is 1 mm . No need to normalize to this thickness.

Measured Glassy Carbon data had 600 s exposure time.

Data to be calibrated has to be normalized to 600 s exposure time, and the intensity divided by the sample thickness.

Units will be in \(\mathbf{m m}^{-1}\)


\section*{Empty cuvette and buffer subtraction}

\section*{Subtraction}

Scattering is additive
All objects in the beam contribute to the total scattering : camera (windows, environment, collimation), buffer, sample container, etc... The contribution of these elements is additive.

Unknown (and wanted) contribution to the total scattering coming from the sample may be extracted from the total scattering data by simple subtraction of the known contributions : camera and/or buffers or containers.

Subtraction can be done directly from the 2D images or from the 1D curves

\section*{Buffer subtraction : aqueous solutions}

The total scattered intensity from a liquid solutions (i.e. proteins) is a contribution of the camera, the cell or capillary, the protein signal and the solvent (buffer) signal.

In order to obtain the scattering arising from the protein alone a subtraction has to be preformed : data with sample minus data of buffer alone.


Camera and cell contribution are included in sample and buffer signal, and subtracted at the same time.

Both patterns contain the SAME contribution from the camera (C).

\section*{Empty cuvette subtraction}


\[
\mathbb{M} \times \text { enocs }
\]

\section*{Anisotropy analysis}


SAXS Data Acquisition and Reduction

\section*{Anisotropy analysis}



Exploring the very small

\section*{Simple GISAXS stage}


GiSAXS
GiSWAXS

Exploring the very small

\section*{GISAXS / GIWAXS}

Flip-flop the stage, not removing the sample


\section*{GISAXS alignment}

\author{
Simple Stage
}




\section*{Advanced GISAXS stage}
z : vertical translation om : omega, reflection tilt phi : vertiocal rotation rx : fine tilt
ry : fine reflection tilt \(z^{\prime}\) : manual vertical translation



GiSAXS

\section*{GISAXS alignment}

\section*{Advanced Stage}

Align first the sample support into the beam.
1) check for edge
2) check for horizontality





\section*{GISAXS alignment}

\author{
Advanced Stage
}


Correction of \(z^{\prime}\) to shift rotation point from the support surface to the sample surface.

\(A \mathrm{ANI}_{2}=10^{0}\)



Now align the sample for horizontality in both directions
1) Direction 'rx'
2) Turn 'phi' motor \(180^{\circ}\)
3) Direction 'ry'

Exploring the very small

\section*{GISAXS alignment}

\author{
Advanced stage
}
\[
6.2-6.0=0.2
\]



Temperature range :


\section*{Linkam Temperature Stage}
xenocs
Exploring the very small

Temperature controller
\(\mathbf{L N}_{2}\) reservoir
sample

Single sample : self-standing or capillary

\section*{Linkam Tensile Stage}


Temperature range : \(-196^{\circ} \mathrm{C}\) to \(350^{\circ} \mathrm{C}\)

Single sample : self-standing


\section*{Flow-through}

No temperature controlled.
For ideal buffer subtraction, measure of sample and buffer made at exactly the same position of capillary.


Push piston for flow in


Exploring the very small

\section*{Virtual Detector}

\section*{Acquisition}


Status: Scan 128 loaded Xenocs Interface to \(\mathrm{Spec} / /\) specfe-xenocs 1.0

\(\left[\begin{array}{rl}\text { Saving options } & \\ \text { C External } & \\ \text { Exper. name: Inhouse } & \text { test } \\ \text { First Number: } & 1201\end{array}\right.\)

Kenocs

\(\left[\begin{array}{l}\text { Acq. Mode } \\ \text { - Saxs Waxs Both }\end{array}\right]\left[\begin{array}{l}\text { SPEC/Detector } \\ \text { 「Use in ct/scan ROIs }\end{array}\right]\)


\section*{Virtual Detector}

\section*{Reconstruction}


\section*{Mapping Acquisition}


\section*{RASTER SCAN:}
- The acquisition program calculates the number of measured points as function of the size of the ROI and the size of the beam, and calculates the motor positions for the sample stage to move.
-Takes one SAXS/WAXS exposure for every position (moves automatically) of the scan starting from the actual motor position at center of ROI.
- If step-size = beam-size : total coverage of area

\section*{Reflectometry}

Follow-up of the intensity of the specular reflection while scanning the incident angle.

The software creates a drifting ROI, and measures the intensity, frame-by-frame. A


\section*{Reflectometry}

\section*{Acquisition}
- SPEC macro
for (jj=0;jj<N;JJ++) {
multiexp 1 }
umv th 0.01
}
```

```
```

umv th 0

```
```

```
umv th 0
```

Align the sample

Reflectometry

Reconstruction

Reflectometry

Comparison of a Xeuss reflectometry measurement (sample to detector distance of 2.4 meters, θ step of 0.005°) with an acquisition on a standard reflectometer (seifert reflectometer). Measurement on the mesoporous thin film.

Thank you

for your attention!

